
A Low-Latency Reliable Transport Solution for Network-Connected UAV

Sai Jiang, Qingqing Zhang, Aozhou Wu, Qingwen Liu, Jun Wu, Pengfei Xia
College of Electronics and Information Engineering

Tongji University
Shanghai, China

e-mail: sai.jiang@tongji.edu.cn, anne@tongji.edu.cn, 13146653740@163.com, qliu@tongji.edu.cn, wujun@tongji.edu.cn,
pengfei.xia@gmail.com

Abstract—Existing Unmanned Aerial Vehicles (UAVs) mainly
rely on the direct ground-to-UAV communications over the
unlicensed spectrum, which can only operate within the visual
line of sight. Integrating UAVs into cellular networks is a
promising solution to extend the range but poses new
challenges to the transport protocols. To ensure the flight
safety, the transmission of UAV commands and mission-
related data is required to be reliable with low latency. In this
paper, we propose a Low-latency Reliable Transmission (LRT)
protocol by exploiting the rateless and online properties of
online network coding. We design the LRT, implement it, and
evaluate its performance in terms of the in-order per message
delay. Experimental results show that LRT can provide low-
latency transmission service comparable to that of UDP while
giving the same reliability of TCP, which makes it an attractive
option for Network-Connected UAV applications.

Keywords-TCP/IP; high throughput low latency
communication; network coding; network-connected UAVs

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) have found fast

growing applications in recent years, such as for cargo
delivery, sky monitoring, traffic control, rescue and search,
communication relaying [1]. However, existing UAV
systems mainly rely on the direct ground-to-UAV
communications over the unlicensed spectrum, which is of
limited data rate, unreliable, insecure, vulnerable to
interference, and can only operate within the visual line of
sight. As UAV applications increase explosively in the
coming years, these shortcomings will be magnified. Thanks
to the almost ubiquitous accessibility of cellular systems, it is
natural to integrate UAVs into cellular networks, referred to
as Network-Connected UAVs [2, 3].

By means of cellular networks, Network-Connected
UAVs are expected to outperform the traditional ones
significantly. However, many new challenges need to be
addressed before realizing the promising visions. For
instance, we must deliver control commands reliably with
low latency to ensure the flight safety. Also, UAVs must
transfer a rate-demanding live stream back for monitoring.
The traditional transport protocols, such as TCP and UDP,
fail to meet the complex requirements. UDP guarantees low
latency and high throughput at the cost of no reliability. TCP
indeed guarantees the reliability, but the retransmission
latency is unacceptable when the end-to-end delay is large.

Moreover, the congestion control mechanism in TCP may
lead to throughput degradation mistakenly [4]. Instead,
rateless codes are good options to meet those requirements
[5-8].

As the term implies, rateless codes do not exhibit a fixed
code rate, thereby enabling a reliable transmission approach.
The sender sends encoding symbols endlessly. The receiver
receives these symbols and tries to recover the original
symbols. If the decoding operation fails, the receiver receives
more symbols, retries the recovery and repeats the process
until the original being recovered successfully. Once the
source symbols are recovered, the receiver sends an
acknowledgement (ACK) to the sender for confirmation.
Then, the sender stops encoding, and the entire transmission
is completed. Thus, even without the channel status
information, rateless codes can complete self-adaptation and
achieve reliable transmission, which also contributes to high
throughput.

However, most rateless codes are essentially block codes.
Block codes take a source block as the coding unit, which is
awkward for time-critical applications. As pieces of the
original data, source symbols can be sent individually
without latency. However, if some symbol is lost during
transmission, we still have to accumulate enough source
symbols before encoding, which increases the latency. In the
worst case, we must wait for the rest source symbols if
the first symbol in a -sized source block is lost. In other
words, a large part of the latency comes from the
accumulation of enough symbols for the source block. Thus,
it is hard for block-based rateless codes to achieve a good
balance between latency and throughput [9, 10].

Network coding shares the similar rateless property but
offers more flexibility [11, 12]. In this paper, we propose an
online network coding based Low-latency Reliable
Transmission (LRT) protocol that facilitates Network-
Connected UAV applications. This paper is organized as
follows. In section II, we give an overview of online network
coding. Then, we present the details of our proposed protocol
in section III. In section IV, we present the performance
evaluation of LRT. Finally, conclusions are given in section
V. Fig. 1 illustrates a LRT-integrated Network-Connected
UAV. Logically, LRT provides a high-throughput low-
latency reliable tunnel for the data exchanged between a
UAV and its controller.

511

2018 10th International Conference on Communication Software and Networks

978-1-5386-7223-5/18/$31.00 ©2018 IEEE

Figure 1. LRT-integrated Network-Connected UAVs

II. ONLINE NETWORK CODING
In principle, network coding generates encoding symbols

as linear combinations of source symbols with coefficients
selected from a finite field. The simple encoding principle
makes it possible for network coding to meet various
application demands. As a variant of network coding, online
network coding is even capable of on-the-fly coding, which
makes it free from the block size restriction. For online
network coding, every source symbol can be added to the
encoder on the fly. Repair symbols can be generated
immediately from the existing source symbols. At the
receiver, the fact that the symbol is seen by the decoder
means that 1) the symbol is part of the linear combination
given by a new encoding symbol, 2) all the previous
symbols have been seen or decoded before, and 3) the new
linear combination is linearly independent of the previous
combinations [13]. As a result, all the source symbols
involved in the encoding process can be recovered, once the
number of encoding symbols received is equal to or slightly
larger than the number of source symbols. Thus, we can
recover the lost symbols with much lower latency, which
makes online network coding the ideal alternative to the
traditional block-based rateless codes. Fig. 2 gives a
summary of the coding principles of both block-based
rateless codes and online network coding.

Figure 2. Block coding versus Online coding

Fig. 3 gives an example of using online network coding
for transmission. At the beginning, the first source symbol
P1 is lost during transmission, which is similar to the worst
case of the traditional block codes. A repair symbol, which is
a linear combination of P1 and P2, is allowed to be
transferred after the successful delivery of P2. The reception
of the repair symbol makes P1 being recovered immediately.
Then, both P3 and P4 are lost during transmission, and the
next repair symbol makes P3 being seen. Next, P6 is lost,
and the following repair symbol makes P4 being seen. At last,
both P7 and P8 are transferred successfully. The last repair
symbol makes all the symbols being seen, thereby recovering
P3, P4 and P6 successfully. As a result, the latency of online
network coding only depends on the loss rate and the applied
redundancy.

Figure 3. Online network coding example

512

III. THE LRT PROTOCOL
LRT is a UDP-based application-level reliable transport

protocol for latency-sensitive applications over various
networks. LRT provides low latency transmission service
comparable to that of UDP while guaranteeing reliable in-
order delivery like TCP. The time to transfer a message via
LRT can be expressed as:

�������������������

where is the time required to transform the original
message into the equal-sized source symbols, is the
encoding latency, is the inherent end-to-end network
delay, is the decoding latency, and is the time
required to reconstruct the original message from source
symbols. Equation (1) lists the five time-consuming
processes of rateless transmission. The following parts are
organized accordingly.

A. Preprocessing

In practice, messages are of various size and may not fit
equal-sized source symbols perfectly. When we transform a
message into one or several source symbols, the last symbol
may be partially filled. Thus, the residual space must be
handled carefully. A straightforward approach is to fill the
residual space with zeros directly, which minimizes the
latency but adds significant bandwidth overhead. To get a
balance between efficiency and latency, we adopt the
strategy that the residual space is filled with zeros when there
is no more queued message. Otherwise, the residual space is
filled with the data from the next message. To recover the
original message, the length of the message is prefixed as
part of the data that will be encoded.

B. Coding Scheme

As a stable and high-performance network coding library,
Kodo is adopted to build a low-latency reliable transmission
protocol in this paper [14]. The specific online network
coding implementation provided by Kodo is built on block-
based Random Linear Network Coding (RLNC) [15]. As a
result, the specific implementation operates like block codes
but with the online capability. To initialize the coder
instances, both the maximum block size and the symbol size
are specified. With the adding of source symbols, the block
size expands dynamically until reaching the preset limit. In
return, the maximum number of decoded symbols between
two consecutive decoding events is limited, which gives an
upper bound on the decoding latency.

C. ACK Scheme

For block codes, once the source block is successfully
decoded at the receiver, an ACK is fed back indicating that
the sender can stop encoding. However, the source block of
online network coding expands with the appearance of new
symbols, which makes that ACK scheme not applicable.
Here we take the concept of matrix rank. For the source
symbols that have been added to the encoder so far which

form the knowledge space of the encoder, the term encoder
rank is used to refer to the number of source symbols.
Similarly, for the source symbols that have been seen by the
decoder which form the knowledge space of the decoder, the
term decoder rank is used to refer to the number of seen
symbols. Thereafter, encoding symbols are required only
when the encoder knowns more information than the decoder,
i.e. when the encoder rank is larger than the decoder rank.
The encoder keeps tracking the decoder rank via rank-update
ACKs, which are fed back when the decoder sees new
symbols.

D. Multiple Coders Support

As there exist multiple coders during transmission, the
symbols generated by some encoder should be delivered to
the correct decoder, and the rank-update ACKs generated by
some decoder should be delivered to the correct encoder as
well. During the transmission, a unique ID is given to each
newly initialized encoder, which is carried by each encoding
symbol later. At the receiver, a new decoder is initialized and
assigned with the ID carried by the encoding symbol. Thus,
the encoder and the paired decoder share the same ID. The
encoding symbols are dispatched to the decoder sharing the
same ID. The similar rule is applied to the rank-update
ACKs as well.

On the other hand, the encoding symbols may arrive at
the receiver after the source symbols being recovered and the
paired decoder being released. Therefore, a variable for
filtering the out-of-date symbols is maintained by the
receiver. The received symbols of which the ID is less than
the filtering value can be discarded directly. Unfortunately,
the reception of out-of-date symbols suggests that the paired
encoder is probably not released due to the lost rank-update
ACK. Thus, an extra full-rank ACK is fed back to the
encoder. We increase the filtering value by one only when all
the source symbols sharing the same value are fully decoded.

E. Rate Control

To fully exploit the rateless property, congestion control
mechanisms are omitted. Instead, rate limiting algorithms
such as the token bucket algorithm are used to throttle the
outgoing flow. Before generating a symbol, the rate limiting
algorithm is checked first. If there exists an outgoing
opportunity, a symbol is generated, packetized and sent. As
source symbols are essentially the user data, they are always
transferred as quickly as possible. Then, sending
opportunities are distributed evenly among multiple encoders
in a round-robin approach. Thus, the outgoing rate limitation
should fall within this interval:

��������������������������

where is the flow rate of the source symbols, is the
redundancy rate that matches the observed packet loss rate,

 is the total available bandwidth, and
p
 is a parameter

varying between 0 and 1 which is used to reserve some
bandwidth for other best-effort traffic.

513

Figure 4. LRT Architecture

F. Implementation Details

We have implemented LRT following the architecture
shown in Fig. 4. According to the data flow, LRT can be
divided into four sublayers. At the top, Send API Module
and Recv API Module provide a user interface for
transmission. Then, Division Module and Reconstruct
Module take the responsibility of transforming messages into
equal-sized symbols and the reverse operation. At the
middle, all the coder instances are placed in the queues for
the convenience of scheduling. At the bottom, Pkt Module
and ACK Module deal with the actual transmission using
UDP.

IV. EVALUATION
Since high throughput is assured by the rateless property

and latency is of utmost importance to the remote control of
UAVs, we only evaluate the latency performance of LRT in
this section. To reflect the latency, the in-order per message
delay is used as our key metric, which captures the elapsed
time between submitting the message and fetching the
message. Actually, the in-order per message delay consists of
two parts: the end-to-end network delay and the latency
overhead of the reliability assured by the transport protocols.
The end-to-end delay for a real network changes
dramatically [16, 17]. To ensure the reproducibility, netem is
used to simulate various network conditions [18]. With the
constant end-to-end delay, the latency overhead can be
measured accurately. According to the QoS specification of
the current LTE networks, the simulated end-to-end delay is
fixed at 50ms. For convenient, a random generator is used as
our data source for transmission, which generates equal-sized
messages of 1Kbytes at a constant interval. Moreover, each
message contributes to exactly one source symbol.

A. LRT versus TCP

In this part, we evaluate the latency performance of both
LRT and TCP. Fig. 5 shows the delay distribution of both
LRT and TCP at the loss rates of 2%, 5% and 10%. As the
loss rate increases, the Cumulative Distribution Function
(CDF) curve of either LRT or TCP shifts to the lower right

corner, which indicates the latency performance degradation.
Since the gaps between adjacent curves are much smaller,
LRT has a much better immunity to losses. We also observe
that the CDF curves of TCP follow a different pattern from
those of LRT. TCP adopts Automatic Repeat reQuest (ARQ)
to guarantee reliable transmission. Before realizing the
packet loss and being able to retransmit the packet, TCP has
to wait for one RTT which is 100ms in this setting.
Moreover, due to the requirements of in-order delivery,
packets being retransmitted block the subsequent packets
that have been successfully transferred, which adds the extra
latency. As a result, over 70% of messages transferred by
TCP have a delay between 50ms and 150ms. Also, less than
10% have an exact delay of 50ms at the loss rate of 10%. For
LRT, the source flow is protected by as many repair symbols
as possible, which avoids the retransmission completely.
Even at the loss rate of 10%, over 70% of LRT messages still
have an exact delay of 50ms. Also, over 99% have a delay
between 50ms and 120ms, which outperforms TCP
significantly.

Figure 5. Delay CDF of both LRT and TCP at the loss rate of 2%, 5%,

10%

514

B. LRT versus Block-Based Scheme

In this part, we compare LRT with a similar scheme that
is built on block-based RLNC. For block codes, the block
size has a critical influence on the latency performance. To
determine the size, we assemble the source symbols
accumulated in a timing cycle as a source block. As a result,
the size of each source block is dynamically determined
according to the source flow rate and the timing cycle. In this
case, the timing cycle is fixed at 10ms.

Fig. 6 shows the in-order per message delay of 50,000
messages at the loss rate of 5%. Since LRT is designed to be
fully reliable, both LRT and the block-based scheme
successfully deliver the separate 50,000 messages. We
observe that most messages of the block-based scheme have
a delay between 50ms and 80ms. By contrast, most messages
of LRT have a delay between 50ms and 60ms, which reduces
the maximum latency overhead from 30ms to 10ms
significantly. We also observe that LRT has much lower
jitter. For the block-based scheme, the delay outliers reach
120ms. However, the delay outliers of LRT are only around
70ms, which enables smoother transmission.

Figure 6. Delay comparison between LRT and Block-based Scheme at the

loss rate of 5%

V. CONCLUSIONS
Considering the complex QoS requirements of Network-

Connected UAVs, both TCP/UDP and block-based rateless
codes fail to give a promising transport solution. In this
paper, we propose an online network coding based Low-
latency Reliable Transmission (LRT) protocol. Experimental
results show that LRT can achieve significantly lower
latency without losing the benefit of reliability and high
throughput. To support the potential large-scale deployment
of LRT, the evaluation of LRT will not be limited to the

simulated environments in the feature research. The relevant
issues, such as the competition among LRT flows and the
interaction between LRT and the underlying networks, will
be further studied.

REFERENCES
[1] H. C. Kim, C. S. Lim, C. S. Lee, and J. H. Choi, "Introduction of

Real-Time Video Surveillance System Using UAV," Journal of
Communications, vol. 11, no. 2, pp. 213-220, 2016.

[2] Y. Zeng, R. Zhang, and T. J. Lim, "Wireless communications with
unmanned aerial vehicles: opportunities and challenges," IEEE
Communications Magazine, vol. 54, no. 5, pp. 36-42, 2016.

[3] X. Lin et al., "The Sky Is Not the Limit: LTE for Unmanned Aerial
Vehicles," IEEE Communications Magazine, vol. 56, no. 4, pp. 204-
210, 2018.

[4] V. Paxson, "End-to-end Internet packet dynamics," IEEE/ACM
Transactions on Networking, vol. 7, no. 3, pp. 277-292, 1999.

[5] D. J. C. MacKay, "Fountain codes," IEEE Proceedings -
Communications, vol. 152, no. 6, pp. 1062-1068, 2005.

[6] M. Luby, "LT codes," in The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings., 2002, pp. 271-
280.

[7] A. Shokrollahi, "Raptor codes," IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551-2567, 2006.

[8] M. Watson and T. S. M. L. A. Shokrallahi, "RFC 6330: RaptorQ
Raptor Forward Error Correction Scheme for Object Delivery," IETF,
RFC 6330, 2011.

[9] S. Nazir, D. Vukobratović, and V. Stanković, "Performance
evaluation of Raptor and Random Linear Codes for H.264/AVC
video transmission over DVB-H networks," in 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011, pp. 2328-2331.

[10] V. Roca, B. Teibi, C. Burdinat, T. Tran-Thai, and C. Thienot, "Block
or convolutional AL-FEC codes? A performance comparison for
robust low-latency communications," 2017.

[11] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, "Network coding: an
instant primer," ACM SIGCOMM Computer Communication Review,
vol. 36, no. 1, pp. 63-68, 2006.

[12] N. Thomos and P. Frossard, "Network Coding and Media Streaming,"
Journal of Communications, vol. 4, no. 9, pp. 628-639, 2009.

[13] J. K. Sundararajan, D. Shah, M. Médard, and P. Sadeghi, "Feedback-
Based Online Network Coding," IEEE Transactions on Information
Theory, vol. 63, no. 10, pp. 6628-6649, 2017.

[14] M. V. Pedersen, J. Heide, and F. H. Fitzek, "Kodo: An open and
research oriented network coding library," in International
Conference on Research in Networking, 2011, pp. 145-152.

[15] S. Wunderlich, F. Gabriel, S. Pandi, and F. H. P. Fitzek, "We don't
need no generation - a practical approach to sliding window RLNC,"
in 2017 Wireless Days, 2017, pp. 218-223.

[16] Y. Zhong, T. Q. Quek, and X. Ge, "Heterogeneous cellular networks
with spatio-temporal traffic: Delay analysis and scheduling," IEEE
Journal on Selected Areas in Communications, vol. 35, no. 6, pp.
1373-1386, 2017.

[17] Y. Zhong, M. Haenggi, F. C. Zheng, W. Zhang, T. Q. S. Quek, and W.
Nie, "Toward a Tractable Delay Analysis in Ultra-Dense Networks,"
IEEE Communications Magazine, vol. 55, no. 12, pp. 103-109, 2017.

[18] S. Hemminger, "Network emulation with NetEm," in Linux conf au,
2005, pp. 18-23.

515

		2018-09-25T02:42:39-0400
	Certified PDF 2 Signature

