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Abstract—Existing Unmanned Aerial Vehicles (UAVs) mainly 
rely on the direct ground-to-UAV communications over the 
unlicensed spectrum, which can only operate within the visual 
line of sight. Integrating UAVs into cellular networks is a 
promising solution to extend the range but poses new 
challenges to the transport protocols. To ensure the flight 
safety, the transmission of UAV commands and mission-
related data is required to be reliable with low latency. In this 
paper, we propose a Low-latency Reliable Transmission (LRT) 
protocol by exploiting the rateless and online properties of 
online network coding. We design the LRT, implement it, and 
evaluate its performance in terms of the in-order per message 
delay. Experimental results show that LRT can provide low-
latency transmission service comparable to that of UDP while 
giving the same reliability of TCP, which makes it an attractive 
option for Network-Connected UAV applications. 

Keywords-TCP/IP; high throughput low latency 
communication; network coding; network-connected UAVs 

I.  INTRODUCTION 
Unmanned Aerial Vehicles (UAVs) have found fast 

growing applications in recent years, such as for cargo 
delivery, sky monitoring, traffic control, rescue and search, 
communication relaying [1]. However, existing UAV 
systems mainly rely on the direct ground-to-UAV 
communications over the unlicensed spectrum, which is of 
limited data rate, unreliable, insecure, vulnerable to 
interference, and can only operate within the visual line of 
sight. As UAV applications increase explosively in the 
coming years, these shortcomings will be magnified. Thanks 
to the almost ubiquitous accessibility of cellular systems, it is 
natural to integrate UAVs into cellular networks, referred to 
as Network-Connected UAVs [2, 3]. 

By means of cellular networks, Network-Connected 
UAVs are expected to outperform the traditional ones 
significantly. However, many new challenges need to be 
addressed before realizing the promising visions. For 
instance, we must deliver control commands reliably with 
low latency to ensure the flight safety. Also, UAVs must 
transfer a rate-demanding live stream back for monitoring. 
The traditional transport protocols, such as TCP and UDP, 
fail to meet the complex requirements. UDP guarantees low 
latency and high throughput at the cost of no reliability. TCP 
indeed guarantees the reliability, but the retransmission 
latency is unacceptable when the end-to-end delay is large. 

Moreover, the congestion control mechanism in TCP may 
lead to throughput degradation mistakenly [4]. Instead, 
rateless codes are good options to meet those requirements 
[5-8]. 

As the term implies, rateless codes do not exhibit a fixed 
code rate, thereby enabling a reliable transmission approach. 
The sender sends encoding symbols endlessly. The receiver 
receives these symbols and tries to recover the original 
symbols. If the decoding operation fails, the receiver receives 
more symbols, retries the recovery and repeats the process 
until the original being recovered successfully. Once the 
source symbols are recovered, the receiver sends an 
acknowledgement (ACK) to the sender for confirmation. 
Then, the sender stops encoding, and the entire transmission 
is completed. Thus, even without the channel status 
information, rateless codes can complete self-adaptation and 
achieve reliable transmission, which also contributes to high 
throughput. 

However, most rateless codes are essentially block codes. 
Block codes take a source block as the coding unit, which is 
awkward for time-critical applications. As pieces of the 
original data, source symbols can be sent individually 
without latency. However, if some symbol is lost during 
transmission, we still have to accumulate enough source 
symbols before encoding, which increases the latency. In the 
worst case, we must wait for the rest  source symbols if 
the first symbol in a  -sized source block is lost. In other 
words, a large part of the latency comes from the 
accumulation of enough symbols for the source block. Thus, 
it is hard for block-based rateless codes to achieve a good 
balance between latency and throughput [9, 10]. 

Network coding shares the similar rateless property but 
offers more flexibility [11, 12]. In this paper, we propose an 
online network coding based Low-latency Reliable 
Transmission (LRT) protocol that facilitates Network-
Connected UAV applications. This paper is organized as 
follows. In section II, we give an overview of online network 
coding. Then, we present the details of our proposed protocol 
in section III. In section IV, we present the performance 
evaluation of LRT. Finally, conclusions are given in section 
V. Fig. 1 illustrates a LRT-integrated Network-Connected 
UAV. Logically, LRT provides a high-throughput low-
latency reliable tunnel for the data exchanged between a 
UAV and its controller. 
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Figure 1.  LRT-integrated Network-Connected UAVs

II. ONLINE NETWORK CODING 
In principle, network coding generates encoding symbols 

as linear combinations of source symbols with coefficients 
selected from a finite field. The simple encoding principle 
makes it possible for network coding to meet various 
application demands. As a variant of network coding, online 
network coding is even capable of on-the-fly coding, which 
makes it free from the block size restriction. For online 
network coding, every source symbol can be added to the 
encoder on the fly. Repair symbols can be generated 
immediately from the existing source symbols. At the 
receiver, the fact that the  symbol is seen by the decoder 
means that 1) the  symbol is part of the linear combination 
given by a new encoding symbol, 2) all the previous  
symbols have been seen or decoded before, and 3) the new 
linear combination is linearly independent of the previous 
combinations [13]. As a result, all the source symbols 
involved in the encoding process can be recovered, once the 
number of encoding symbols received is equal to or slightly 
larger than the number of source symbols. Thus, we can 
recover the lost symbols with much lower latency, which 
makes online network coding the ideal alternative to the 
traditional block-based rateless codes. Fig. 2 gives a 
summary of the coding principles of both block-based 
rateless codes and online network coding. 

 
Figure 2.  Block coding versus Online coding 

 

Fig. 3 gives an example of using online network coding 
for transmission. At the beginning, the first source symbol 
P1 is lost during transmission, which is similar to the worst 
case of the traditional block codes. A repair symbol, which is 
a linear combination of P1 and P2, is allowed to be 
transferred after the successful delivery of P2. The reception 
of the repair symbol makes P1 being recovered immediately. 
Then, both P3 and P4 are lost during transmission, and the 
next repair symbol makes P3 being seen. Next, P6 is lost, 
and the following repair symbol makes P4 being seen. At last, 
both P7 and P8 are transferred successfully. The last repair 
symbol makes all the symbols being seen, thereby recovering 
P3, P4 and P6 successfully. As a result, the latency of online 
network coding only depends on the loss rate and the applied 
redundancy. 
 

 
Figure 3.  Online network coding example 
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III. THE LRT PROTOCOL 
LRT is a UDP-based application-level reliable transport 

protocol for latency-sensitive applications over various 
networks. LRT provides low latency transmission service 
comparable to that of UDP while guaranteeing reliable in-
order delivery like TCP. The time to transfer a message via 
LRT can be expressed as: 

�������������������

where  is the time required to transform the original 
message into the equal-sized source symbols,  is the 
encoding latency,  is the inherent end-to-end network 
delay,  is the decoding latency, and  is the time 
required to reconstruct the original message from source 
symbols. Equation (1) lists the five time-consuming 
processes of rateless transmission. The following parts are 
organized accordingly. 

A. Preprocessing 

In practice, messages are of various size and may not fit 
equal-sized source symbols perfectly. When we transform a 
message into one or several source symbols, the last symbol 
may be partially filled. Thus, the residual space must be 
handled carefully. A straightforward approach is to fill the 
residual space with zeros directly, which minimizes the 
latency but adds significant bandwidth overhead. To get a 
balance between efficiency and latency, we adopt the 
strategy that the residual space is filled with zeros when there 
is no more queued message. Otherwise, the residual space is 
filled with the data from the next message. To recover the 
original message, the length of the message is prefixed as 
part of the data that will be encoded. 

B. Coding Scheme 

As a stable and high-performance network coding library, 
Kodo is adopted to build a low-latency reliable transmission 
protocol in this paper [14]. The specific online network 
coding implementation provided by Kodo is built on block-
based Random Linear Network Coding (RLNC) [15]. As a 
result, the specific implementation operates like block codes 
but with the online capability. To initialize the coder 
instances, both the maximum block size and the symbol size 
are specified. With the adding of source symbols, the block 
size expands dynamically until reaching the preset limit. In 
return, the maximum number of decoded symbols between 
two consecutive decoding events is limited, which gives an 
upper bound on the decoding latency. 

C. ACK Scheme 

For block codes, once the source block is successfully 
decoded at the receiver, an ACK is fed back indicating that 
the sender can stop encoding. However, the source block of 
online network coding expands with the appearance of new 
symbols, which makes that ACK scheme not applicable. 
Here we take the concept of matrix rank. For the source 
symbols that have been added to the encoder so far which 

form the knowledge space of the encoder, the term encoder 
rank is used to refer to the number of source symbols. 
Similarly, for the source symbols that have been seen by the 
decoder which form the knowledge space of the decoder, the 
term decoder rank is used to refer to the number of seen 
symbols. Thereafter, encoding symbols are required only 
when the encoder knowns more information than the decoder, 
i.e. when the encoder rank is larger than the decoder rank. 
The encoder keeps tracking the decoder rank via rank-update 
ACKs, which are fed back when the decoder sees new 
symbols. 

D. Multiple Coders Support 

As there exist multiple coders during transmission, the 
symbols generated by some encoder should be delivered to 
the correct decoder, and the rank-update ACKs generated by 
some decoder should be delivered to the correct encoder as 
well. During the transmission, a unique ID is given to each 
newly initialized encoder, which is carried by each encoding 
symbol later. At the receiver, a new decoder is initialized and 
assigned with the ID carried by the encoding symbol. Thus, 
the encoder and the paired decoder share the same ID. The 
encoding symbols are dispatched to the decoder sharing the 
same ID. The similar rule is applied to the rank-update 
ACKs as well. 

On the other hand, the encoding symbols may arrive at 
the receiver after the source symbols being recovered and the 
paired decoder being released. Therefore, a variable for 
filtering the out-of-date symbols is maintained by the 
receiver. The received symbols of which the ID is less than 
the filtering value can be discarded directly. Unfortunately, 
the reception of out-of-date symbols suggests that the paired 
encoder is probably not released due to the lost rank-update 
ACK. Thus, an extra full-rank ACK is fed back to the 
encoder. We increase the filtering value by one only when all 
the source symbols sharing the same value are fully decoded. 

E. Rate Control 

To fully exploit the rateless property, congestion control 
mechanisms are omitted. Instead, rate limiting algorithms 
such as the token bucket algorithm are used to throttle the 
outgoing flow. Before generating a symbol, the rate limiting 
algorithm is checked first. If there exists an outgoing 
opportunity, a symbol is generated, packetized and sent. As 
source symbols are essentially the user data, they are always 
transferred as quickly as possible. Then, sending 
opportunities are distributed evenly among multiple encoders 
in a round-robin approach. Thus, the outgoing rate limitation 
should fall within this interval: 

��������������������������

where  is the flow rate of the source symbols,  is the 
redundancy rate that matches the observed packet loss rate, 

 is the total available bandwidth, and 
p
 is a parameter 

varying between 0 and 1 which is used to reserve some 
bandwidth for other best-effort traffic.  
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Figure 4.  LRT Architecture 

F. Implementation Details  

We have implemented LRT following the architecture 
shown in Fig. 4. According to the data flow, LRT can be 
divided into four sublayers. At the top, Send API Module 
and Recv API Module provide a user interface for 
transmission. Then, Division Module and Reconstruct 
Module take the responsibility of transforming messages into 
equal-sized symbols and the reverse operation.  At the 
middle, all the coder instances are placed in the queues for 
the convenience of scheduling. At the bottom, Pkt Module 
and ACK Module deal with the actual transmission using 
UDP. 

IV. EVALUATION 
Since high throughput is assured by the rateless property 

and latency is of utmost importance to the remote control of 
UAVs, we only evaluate the latency performance of LRT in 
this section. To reflect the latency, the in-order per message 
delay is used as our key metric, which captures the elapsed 
time between submitting the message and fetching the 
message. Actually, the in-order per message delay consists of 
two parts: the end-to-end network delay and the latency 
overhead of the reliability assured by the transport protocols. 
The end-to-end delay for a real network changes 
dramatically [16, 17]. To ensure the reproducibility, netem is 
used to simulate various network conditions [18]. With the 
constant end-to-end delay, the latency overhead can be 
measured accurately. According to the QoS specification of 
the current LTE networks, the simulated end-to-end delay is 
fixed at 50ms. For convenient, a random generator is used as 
our data source for transmission, which generates equal-sized 
messages of 1Kbytes at a constant interval. Moreover, each 
message contributes to exactly one source symbol. 

A. LRT versus TCP 

In this part, we evaluate the latency performance of both 
LRT and TCP. Fig. 5 shows the delay distribution of both 
LRT and TCP at the loss rates of 2%, 5% and 10%. As the 
loss rate increases, the Cumulative Distribution Function 
(CDF) curve of either LRT or TCP shifts to the lower right 

corner, which indicates the latency performance degradation. 
Since the gaps between adjacent curves are much smaller, 
LRT has a much better immunity to losses. We also observe 
that the CDF curves of TCP follow a different pattern from 
those of LRT. TCP adopts Automatic Repeat reQuest (ARQ) 
to guarantee reliable transmission. Before realizing the 
packet loss and being able to retransmit the packet, TCP has 
to wait for one RTT which is 100ms in this setting. 
Moreover, due to the requirements of in-order delivery, 
packets being retransmitted block the subsequent packets 
that have been successfully transferred, which adds the extra 
latency. As a result, over 70% of messages transferred by 
TCP have a delay between 50ms and 150ms. Also, less than 
10% have an exact delay of 50ms at the loss rate of 10%. For 
LRT, the source flow is protected by as many repair symbols 
as possible, which avoids the retransmission completely. 
Even at the loss rate of 10%, over 70% of LRT messages still 
have an exact delay of 50ms. Also, over 99% have a delay 
between 50ms and 120ms, which outperforms TCP 
significantly. 

 
Figure 5.  Delay CDF of both LRT and TCP at the loss rate of 2%, 5%, 

10% 
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B. LRT versus Block-Based Scheme 

In this part, we compare LRT with a similar scheme that 
is built on block-based RLNC. For block codes, the block 
size has a critical influence on the latency performance. To 
determine the size, we assemble the source symbols 
accumulated in a timing cycle as a source block. As a result, 
the size of each source block is dynamically determined 
according to the source flow rate and the timing cycle. In this 
case, the timing cycle is fixed at 10ms. 

Fig. 6 shows the in-order per message delay of 50,000 
messages at the loss rate of 5%. Since LRT is designed to be 
fully reliable, both LRT and the block-based scheme 
successfully deliver the separate 50,000 messages. We 
observe that most messages of the block-based scheme have 
a delay between 50ms and 80ms. By contrast, most messages 
of LRT have a delay between 50ms and 60ms, which reduces 
the maximum latency overhead from 30ms to 10ms 
significantly. We also observe that LRT has much lower 
jitter. For the block-based scheme, the delay outliers reach 
120ms. However, the delay outliers of LRT are only around 
70ms, which enables smoother transmission. 

 
Figure 6.  Delay comparison between LRT and Block-based Scheme at the 

loss rate of 5% 

V. CONCLUSIONS 
Considering the complex QoS requirements of Network-

Connected UAVs, both TCP/UDP and block-based rateless 
codes fail to give a promising transport solution. In this 
paper, we propose an online network coding based Low-
latency Reliable Transmission (LRT) protocol. Experimental 
results show that LRT can achieve significantly lower 
latency without losing the benefit of reliability and high 
throughput. To support the potential large-scale deployment 
of LRT, the evaluation of LRT will not be limited to the 

simulated environments in the feature research. The relevant 
issues, such as the competition among LRT flows and the 
interaction between LRT and the underlying networks, will 
be further studied. 
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